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Abstract. Consistent Hamiltonian couplings between a set of vector fields and a system of matter fields
are derived by means of BRST cohomological techniques.

1 Introduction

The cohomological approach to the Lagrangian BRST
symmetry [1–5] stimulated the incorporation of new as-
pects within the cohomological BRST setting, like, for in-
stance, a treatment of consistent interactions among fields
with gauge freedom with the preservation of the number of
gauge symmetries [6–10] from the perspective of the defor-
mation of the solution to the master equation [11] with the
help of the local BRST cohomology [12–16]. This proce-
dure was proved to be an efficient deformation technique
for many models of interest, like Chern–Simons models,
Yang–Mills theories, the Chapline–Manton model, p-forms
and chiral p-forms, Einstein’s gravity theory, four- and
eleven-dimensional supergravity, or BF models [11,17–32].

In the meantime, the Hamiltonian version of the BRST
formalism [5,33–37] presents many useful and attractive
features, like the implementation of the BRST symme-
try in quantum mechanics [5] (Chapter 14), examination
of anomalies [38], computation of local BRST cohomol-
ogy [39], and also the explanation of the relationship with
canonical quantization methods [40]. Recently, the Hamil-
tonian BRST setting has been enriched with the topic of
constructing consistent interactions in gauge theories by
means of the deformation technique and local cohomolo-
gies [41–44].

In this paper we investigate the consistent Hamilto-
nian interactions that can be introduced between a set
of vector fields and a system of matter fields with the
help of cohomological BRST arguments combined with
the deformation technique. This approach represents an
extension of our former results exposed in [45] related to
the abelian case. Our method goes as follows. We begin
with a “free” action written as the sum between the ac-
tion for a set of vector fields and an action describing a
matter theory, and construct the corresponding Hamil-
tonian BRST symmetry s, that simply decomposes into
s = δ + γ, with δ the Koszul–Tate differential and γ the
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exterior derivative along the gauge orbits. Its non-trivial
action is essentially due to the first-class constraints in-
volving the vector fields. It has been shown in [41–44] that
the Hamiltonian problem of introducing consistent inter-
actions in gauge theories can be reformulated as a defor-
mation problem of the BRST charge and BRST-invariant
Hamiltonian of a starting “free” theory. Following this
line, we first compute the deformed BRST charge. This ne-
cessitates the (co)homological spaces H (γ) and H

(
δ|d̃
)
,

where d̃ = dxi∂i represents the spatial part of the exterior
space-time derivative. Based on these (co)homologies we
obtain the result that the deformed BRST charge can be
taken to be non-vanishing only at order one in the cou-
pling constant. The consistency of the first-order deforma-
tion requires that the deformed first-class constraints form
a Lie algebra in the Poisson (Dirac) bracket. Secondly, we
investigate the equations responsible for the deformation
of the BRST-invariant Hamiltonian. The first-order defor-
mation equation reveals two different types of couplings.
One involves only the vector fields and their momenta, and
requires no further assumptions. The other demands that
the matter theory should display some conserved Hamil-
tonian currents, equal in number to the number of vec-
tor fields. Consequently, it follows that the second type
of couplings (between vector and matter fields) is of the
form jµ

aA
a
µ, where the jµ

a denote the above mentioned
conserved Hamiltonian currents. The equation that gov-
erns the second-order deformation of the BRST-invariant
Hamiltonian definitely outputs the spatial part of the
quartic vertex of pure Yang–Mills theory, and eventually
other couplings involving both vector and matter fields.
The appearance of the last type of couplings depends on
the behaviour of the conserved currents under the gauge
transformations generated by the deformed first-class con-
straints. Thus, if the spatial part of these currents, ji

a,
transform according to the adjoint representation of the
Lie gauge algebra, then there are no second-order cou-
plings between vector and matter fields, and, meanwhile,
all types of three- and higher-order deformations can be
taken to vanish. In the opposite case, at least the second-
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order deformation implying vector and matter fields is
non-trivial, but in principle there might be other relevant
higher-order interactions as well.

This paper is organized in seven sections. Section 2
briefly formulates the analysis of consistent Hamiltonian
interactions that can be added to a “free” theory with-
out changing its number of gauge symmetries as a defor-
mation problem of the corresponding BRST charge and
BRST-invariant Hamiltonian, finally expressed in terms
of the so-called main equations. In Sect. 3 we determine
the “free” Hamiltonian BRST differential. Based on this,
in Sects. 4 and 5 we derive the deformed BRST charge, re-
spectively, the deformed BRST-invariant Hamiltonian by
means of cohomological techniques. In Sect. 6 we apply
our procedure to two cases of interest, where the role of
the matter fields is played by a set of scalar fields, respec-
tively, by a collection of Dirac fields. Section 7 ends the
paper with some conclusions.

2 Main Hamiltonian deformation equations

We assume a “free” Lagrangian theory subject to some
gauge transformations. All the information on its
Lagrangian gauge structure is contained in the solution
to the master equation. It has been shown that the de-
formation of this solution leads to consistent interactions
among fields with gauge freedom [5]. In the framework
of the Hamiltonian setting, the structure of a given gauge
theory is entirely determined by two quantities: the BRST
charge and the BRST-invariant Hamiltonian. Similar to
the Lagrangian deformation procedure, we can then refor-
mulate the problem of constructing consistent Hamilto-
nian interactions in terms of the deformation of both the
BRST charge and the BRST-invariant Hamiltonian.

As long as the interactions can be constructed in a con-
sistent manner, the BRST charge of a given “free” theory,
Ω0, can be deformed as

Ω0→Ω = Ω0 + g

∫
dD−1x ω1 + g2

∫
dD−1x ω2 +O

(
g3)

= Ω0 + gΩ1 + g2Ω2 +O
(
g3) , (1)

where Ω satisfies the equation

[Ω,Ω] = 0, (2)

and the symbol [, ] means either the Poisson or the Dirac
bracket. (If the starting theory is purely first-class, we
work with the Poisson bracket; if second-class constraints
are also present, then we eliminate them, and use the Dirac
bracket instead.) By projecting (2) on various powers in
the deformation parameter (coupling constant) g, we ar-
rive at the tower of equations

[Ω0, Ω0] = 0, (3)
2 [Ω0, Ω1] = 0, (4)

2 [Ω0, Ω2] + [Ω1, Ω1] = 0, (5)
...

Equation (3) is satisfied by assumption, while the reso-
lution of the remaining equations in terms of the “free”
BRST differential leads to the pieces (Ωk)k>0. With the
deformed BRST charge at hand, we deform the BRST-
invariant Hamiltonian of the “free” theory, H0B, like

H0B → HB

= H0B + g

∫
dD−1x h1 + g2

∫
dD−1x h2 +O

(
g3)

= H0B + gH1 + g2H2 +O
(
g3) , (6)

and demand that it obeys the relation

[HB, Ω] = 0, (7)

which implements that HB is indeed the BRST-invariant
Hamiltonian of the deformed system. Equation (7) can
also be investigated order by order in the deformation pa-
rameter g, giving

[H0B, Ω0] = 0, (8)
[H0B, Ω1] + [H1, Ω0] = 0, (9)

[H0B, Ω2] + [H1, Ω1] + [H2, Ω0] = 0, (10)
...

Equation (8) is again satisfied by hypothesis, while the
others yield the components (Hk)k>0. Equations (3)–(5),
etc., and (8)–(10), etc., govern the Hamiltonian BRST de-
formation treatment, and will be called in the sequel the
main equations.

3 Free BRST differential

We begin with a “free” action written as the sum between
the action for a set of vector fields and an action describ-
ing a matter theory. We assume that the matter fields pos-
sess no gauge invariances of their own. The Hamiltonian
canonical variables are denoted by

(
Aa

µ, π
µ
a , y

α0
)
, where(

Aa
µ, π

µ
a

)
correspond to the vector fields, while the yα0 de-

scribe the matter theory. The non-vanishing fundamental
Poisson (Dirac) brackets are taken in the form[

Aa
µ, π

ν
b

]
= δ ν

µ δa
b,

[
yα0 , yβ0

]
= ωα0β0 , (11)

with ωα0β0 an invertible matrix (the distributional charac-
ter was omitted for simplicity’s sake). Due to the presence
of the vector fields, the system is subject to the irreducible
first-class constraints

G1a ≡ π0
a ≈ 0, G2a ≡ −∂iπ

i
a ≈ 0, (12)

and is endowed with the first-class Hamiltonian

H0 =
∫

dD−1x

(
1
2
πiaπ

a
i +

1
4
F a

ijF
ij
a −Aa

0∂iπ
i
a

+h̄0 (yα0 , ∂iy
α0)

)
, (13)
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where H̄0 =
∫
dD−1x h̄0 (yα0 , ∂iy

α0) represents the canon-
ical Hamiltonian of the purely matter theory. The BRST
charge of this system is given by

Ω0 =
∫

dD−1x
(
π0

aη
a
1 −

(
∂iπ

i
a

)
ηa
2
)
, (14)

the accompanying BRST-invariant Hamiltonian being

H0B = H0 +
∫

dD−1x ηa
1P2a. (15)

In (14) and (15) (ηa
1 , η

a
2 ) are the fermionic ghost number

one Hamiltonian ghosts, while (P1a,P2a) stand for the
associated antighosts. The BRST complex is graded by
the ghost number (gh), defined like the difference between
the pure ghost number (pgh) and the antighost number
(antigh), with

pgh
(
Aa

µ

)
= pgh (πµ

a ) = pgh (yα0) = 0, (16)

pgh (ηa
1 ) = pgh (ηa

2 ) = 1,
pgh (P1a) = pgh (P2a) = 0, (17)

antigh
(
Aa

µ

)
= antigh (πµ

a ) = antigh (yα0) = 0, (18)

antigh (ηa
1 ) = antigh (ηa

2 ) = 0,
antigh (P1a) = antigh (P2a) = 1. (19)

The “free” BRST symmetry s· = [·, Ω0] splits as

s = δ + γ, (20)

where δ is the Koszul–Tate differential, graded according
to the antighost number (antigh (δ) = −1, antigh (γ) =
0), and γ is the exterior longitudinal derivative along the
gauge orbits, graded in terms of the pure ghost number
(pgh (γ) = 1, pgh (δ) = 0). These operators act on the
variables from the BRST complex via the definitions

δAa
µ = 0, δπµ

a = 0, δyα0 = 0, (21)

δηa
1 = δηa

2 = 0, δP1a = −π0
a, δP2a = ∂iπ

i
a, (22)

γAa
0 = ηa

1 , γAa
i = ∂iη

a
2 , γπµ

a = 0, γyα0 = 0, (23)
γηa

1 = γηa
2 = 0, γP1a = γP2a = 0, (24)

that will be used in the sequel during the deformation
process.

4 Deformation of the BRST charge

In this section we analyse the main equations (4) and (5),
etc., that describe the deformation of the “free” BRST
charge. Equation (4) written in a local form becomes

sω1 = ∂ik
i, (25)

for some local ki. In order to solve (25), we develop ω1
according to the antighost number

ω1 =
(0)
ω 1 +

(1)
ω 1 + · · ·+ (J)

ω 1, (26)

with

antigh
(

(I)
ω 1

)
= I, pgh

(
(I)
ω 1

)
= 1, (27)

where the last term in (26) can be assumed to be anni-

hilated by γ, γ
(J)
ω 1= 0. Thus, we need to know the co-

homology of γ, H (γ), in order to output
(J)
ω 1. Looking at

the definitions (23) and (24), we find the result that H (γ)
is generated by F a

ij , π
µ
a , y

α0 , P1a, P2a and their spatial
derivatives, as well as by the undifferentiated ghosts ηa

2 .
The ghosts ηa

1 do not enter the cohomology of γ as they
are γ-exact by virtue of the former definitions in (23). As a
consequence, the general solution to the equation γα = 0
can be represented (up to a trivial term) by

α = αM

([
F a

ij

]
, [πµ

a ] , [y
α0 ] , [P1a] , [P2a]

)
eM (ηa

2 ) , (28)

with eM (ηa
2 ) a basis in the finite-dimensional space of

polynomials in the ghosts ηa
2 , while the notation f [q] sig-

nifies that f depends on q and its derivatives up to a finite

order. Then, the equation γ
(J)
ω 1= 0 possesses the solution

(J)
ω 1= ω̃J

([
F a

ij

]
, [πµ

a ] , [y
α0 ] , [P1a] , [P2a]

)
eJ+1 (ηa

2 ) , (29)

where pgh
(
eJ+1 (ηa

2 )
)
= J + 1 and antigh (ω̃J) = J . Re-

lated to the component of antighost number (J − 1), (25)
becomes

δ
(J)
ω 1 +γ

(J−1)
ω 1= ∂im

i. (30)

For the last equation to display solutions it is necessary
that ω̃J belongs to HJ

(
δ|d̃
)
. However, using the general

results from [15,16] adapted to our situation, we have

HJ

(
δ|d̃
)
= 0, for J > 1. (31)

This implies that we can assume that the development
(26) stops after the first two terms

ω1 =
(0)
ω 1 +

(1)
ω 1, (32)

with γ
(1)
ω 1= 0. Due to (29), we find that

(1)
ω 1= ω̃abη

a
2η

b
2,

where the coefficients ω̃ab = −ω̃ba pertain to H1

(
δ|d̃
)
,

i.e.,
δω̃ab = ∂in

i
ab. (33)

On the other hand, the general representative of H1

(
δ|d̃
)

is λ = λaP2a (see ( 22)), with constant λa. Then, we can
write that ω̃ab = (1/2)fc

abP2c, where fc
ab = −fc

ba are
constant, hence

(1)
ω 1=

1
2
fc

abP2cη
a
2η

b
2. (34)

It follows that the solution to the equation associated with

the antighost number equal to zero, δ
(1)
ω 1 +γ

(0)
ω 1= ∂iq

i,
reads

(0)
ω 1=

(
fc

abπ
i
cA

b
i + ba (yα0 , ∂iy

α0)
)
ηa
2 , (35)
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where the bosonic functions ba (yα0 , ∂iy
α0) are arbitrary

at this stage. Combining the above results, we obtain the
first-order deformation of the BRST charge in the form

Ω1 =
∫

dD−1x

((
f c

abπ
i
cA

b
i + ba (yα0 , ∂iy

α0)
)
ηa
2

+
1
2
fc

abP2cη
a
2η

b
2

)
. (36)

Next, we investigate its second-order deformation. By
direct computation we get

[Ω1, Ω1]=fd
[ab f

e
c]d

∫
dD−1x

(
ηa
2η

b
2π

i
eA

c
i −

1
3
ηa
2η

b
2η

c
2P2e

)

+
∫

dD−1x dD−1x′ ([ba (x) , bb (x′)]

− fc
abbc (x) δ

D−1 (x− x′)
)
ηa
2 (x) η

b
2 (x

′) . (37)

Equation (5) entails the demand that [Ω1, Ω1] is s -exact.
However, from (37) we observe that this requirement can-
not be fulfilled, so [Ω1, Ω1] should vanish. This holds if
and only if the following conditions are simultaneously
satisfied:

fd
[ab f

e
c]d = 0, (38)

[ba (x) , bb (x′)] = fc
abbc (x) δ

D−1 (x− x′) . (39)

The formula (38) shows that the antisymmetric constants
fc

ab satisfy Jacobi’s identity, being thus the structure con-
stants of a Lie algebra. Formula (39) restricts the form of
the functions ba in the sense that they form a Lie algebra
in the Poisson (Dirac) bracket, with structure constants
fc

ab. Due to the fact that [Ω1, Ω1] = 0, we deduce that
we can take Ω2 = Ω3 = · · · = 0. Now, we solve (39). They
possess solutions if and only if the fields yα0 split into two
subsets

yα0 = (yα1 , zα1) , (40)
with the properties[
yα1 , yβ1

]
= 0, [zα1 , zβ1 ] = 0, [yα1 , zβ1 ] = σα1

β1
, (41)

for some invertible matrices σα1
β1

(the distributional char-
acter has been again omitted). Under these circumstances,
we find that

ba = zα1T
α1
a β1

σ̄β1
ρ1
yρ1 , (42)

with σ̄β1
ρ1

the inverse of σα1
β1
, and Tα1

a β1
some constant

matrices, subject to the conditions

Tα1
a β1

T β1
b ρ1
− Tα1

b β1
T β1

a ρ1
= fc

abT
α1
c ρ1

. (43)

The presence of σ̄β1
ρ1

in (42) may in principle lead to the
loss of locality. As we restrict ourselves to local deforma-
tions only, we consider the case of constant σα1

β1
. There-

fore, the deformed BRST charge consistent to all orders
in the deformation parameter is expressed by

Ω=
∫
dD−1x

(
π0

aη
a
1 −

(
(Di)

b
a πi

b − gzα1T
α1
a β1

σ̄β1
ρ1
yρ1

)
ηa
2

+
1
2
gfc

abP2cη
a
2η

b
2

)
, (44)

with (Di)
b

a = δ b
a ∂i − gf b

acA
c
i . From Ω we can gather in-

formation on the deformed constraints and modified gauge
algebra. Indeed, the term in Ω linear in the ghosts ηa

2 gives
rise to the deformed secondary constraints

γ2a ≡ − (Di)
b

a πi
b + gzα1T

α1
a β1

σ̄β1
ρ1
yρ1 ≈ 0, (45)

while the term linear in the antighosts shows that these
constraint functions form a Lie algebra in the Poisson
(Dirac) bracket

[γ2a, γ2b] = gfc
abγ2c, (46)

with the structure constants fc
ab. This completes the de-

formation procedure of the BRST charge for a collection
of vector fields and matter fields.

5 Deformation
of the BRST-invariant Hamiltonian

Further, we approach (9) and (10), etc., that control the
deformation of the BRST-invariant Hamiltonian. By di-
rect computation we find that the first term in the left
hand-side of (9) reads

[H0B, Ω1] = −s
∫

dD−1x

×
(
fa

bc

(
Ab

0
(
Ac

iπ
i
a + ηc

2P2a

)− 1
2
Ab

iA
c
jF

ij
a

)
+ baA

a
0

)

+
∫

dD−1x
[
H̄0, ba

]
ηa
2 . (47)

We notice that the last term in the right-hand side of (47)
is clearly not s-exact, so it must be compensated for by
a corresponding term from [H1, Ω0], which can be accom-
plished if we take H1 of the form

H1 =
∫

dD−1x

(
fa

bc

(
Ab

0
(
Ac

iπ
i
a + ηc

2P2a

)− 1
2
Ab

iA
c
jF

ij
a

)

+baAa
0 + j

)
. (48)

The function j involves the vector fields Aa
i and the matter

fields, and, moreover, we want it to fulfill the equation∫
dD−1x

([
H̄0, ba

]
ηa
2 + [j,Ω0]

)
= 0, or, equivalently,

[
H̄0 (x0) , ba (x)

]
ηa
2 (x)+ [j (x) , Ω0 (x0)] = ∂ik

i (x) . (49)

Using (14), the last equation becomes[
H̄0 (x0) , ba (x)

]
ηa
2 (x)

+
∫

dD−1x′ [j (x) , πi
a (x

′)
]
∂iη

a
2 (x

′) = ∂ik
i (x) . (50)

In order to restrain the left hand-side to a total derivative,
it is necessary that the function j (x) is linear in the fields
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Aa
i because the term

[
H̄0 (x0) , ba (x)

]
does not involve the

vector fields. Thus, we can write

j = ji
aA

a
i , (51)

where ji
a depends only on the matter fields and their

derivatives. Consequently, (50) takes the form[
H̄0 (x0) , ba (x)

]
ηa
2 (x) + ji

a (x) ∂iη
a
2 (x) = ∂ik

i (x) . (52)

The left hand-side of (52) reduces to a total derivative if
and only if [

H̄0 (x0) , ba (x)
]
= ∂ij

i
a (x) . (53)

By means of the Hamilton equations with respect to the
matter fields (∂0F (x) =

[
F (x) , H̄0 (x0)

]
), from (53) we

derive that
∂0ba (x) + ∂ij

i
a (x) = 0, (54)

which expresses nothing but the conservation of the
Hamiltonian currents1 jµ

a =
(
ba, j

i
a

)
. In conclusion, the

consistency of the first-order deformation of the BRST-
invariant Hamiltonian requires that the matter theory dis-
plays some conserved currents, equal in number with the
number of vector fields Aa

µ. In the following we assume
that this requirement is fulfilled. Then, the first-order de-
formation of the BRST-invariant Hamiltonian is given by

H1 =
∫

dD−1x

(
fa

bc

(
Ab

0
(
Ac

iπ
i
a + ηc

2P2a

)− 1
2
Ab

iA
c
jF

ij
a

)

+jµ
aA

a
µ

)
, (55)

where jµ
a stand for the conserved Hamiltonian currents

mentioned in the above.
Now, we pass at the second-order deformation, de-

scribed by (10). Making use of the formulas (44) and (55),
we find that

[H1, Ω1] = s

(∫
dD−1x

1
4
fa

bcf
c
deA

ibAj
aA

d
iA

e
j

)

+
∫

dD−1x
([
ji
b, ba

]
+ fc

abj
i
c

)
Ab

iη
a
2 . (56)

Looking at the form of (56), we remark that two important
cases appear.
(a) If the currents ji

a transform under the deformed gauge
transformations (generated by the deformed first-class
constraints)2 according to the adjoint representation of
the Lie gauge algebra[

ji
b, ba

]
+ fc

abj
i
c = 0, (57)

1 By Hamiltonian currents we understand a set of functions
jµ
a =

(
ba, ji

a

)
that satisfy (54) when the Hamiltonian equa-

tions of motion hold. In general, these currents do not display
a manifestly covariant form. However, if we express these cur-
rents only in terms of the fields (via the elimination of the mo-
menta on their equations of motion), we infer precisely their
Lagrangian form, which is clearly covariant

2 As ji
b depend only on the matter fields and their derivatives,

we find that their deformed gauge transformations are indeed
δ̄εj

i
b =

[
ji
b, γ2a

]
εa
2 = g

[
ji
b, ba

]
εa
2

then the second-order deformation of the BRST-invariant
Hamiltonian will be

H2 = −1
4

∫
dD−1x fa

bcf
c
deA

ibAj
aA

d
iA

e
j . (58)

As Ω2 = 0 and [H2, Ω1] = 0, the third-order deformation
equation is satisfied with the choiceH3 = 0. The equations
for higher-order deformations will then be checked for

H4 = H5 = · · · = 0. (59)

(b) In the opposite situation

[
ji
b, ba

]
+ fc

abj
i
c 	= 0, (60)

there appear non-trivial higher-order deformations that
imply interactions among vector fields and matter fields.

In both cases, the deformed BRST-invariant Hamilto-
nian has the general form

HB =
∫

dD−1x

(
1
2
πiaπ

a
i +

1
4
F̃ a

ijF̃
ij
a

−Aa
0 (Di)

b
a πi

b + h̄0 (yα0 , ∂iy
α0) + gjµ

aA
a
µ

+
(
ηa
1 − gfa

bcη
b
2A

c
0
)P2a

)
+O

(
g2) , (61)

where

F̃ a
ij = F a

ij − gfa
bcA

b
iA

c
j , (62)

and O
(
g2
)
is due only to the supplementary terms present

in case (b).
The deformation treatment developed so far can be

synthesized in three general results as follows. First, the
interaction terms involving only the vector fields generate
the Hamiltonian version of Yang–Mills theory, and the
first-order couplings between the vector fields and mat-
ter fields is of the type jµ

aA
a
µ, where j

µ
a =

(
ba, j

i
a

)
are the

conserved Hamiltonian currents corresponding to the mat-
ter fields. Second, the secondary first-class constraints are
deformed with respect to the initial ones, and, as a conse-
quence, the corresponding gauge transformations will be
modified. Third, the deformed gauge algebra of first-class
constraints is a Lie algebra. Finally, a word of caution.
Once the deformations related to a given matter theory are
computed, special attention should be paid to the elimina-
tion of non-locality, as well as the triviality of the resulting
deformations. This completes our general procedure.

6 Applications

In the sequel we apply the general deformation procedure
investigated so far to two cases of interest, where the mat-
ter theory involves scalar fields, respectively, Dirac fields.
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6.1 Vector fields coupled to scalar fields

First, we analyse the consistent interactions that can be
introduced among a set of real scalar fields and a collection
of vector fields. In this case the “free” Lagrangian action
is given by

S̃L
0
[
Aa

µ, ϕ
A
]
=
∫

d4x

(
− 1

4
F a

µνF
µν
a +

1
2
KAB

(
∂µϕ

A
)

× (∂µϕB
)− V

(
ϕA
))

, (63)

where KAB is an invertible symmetric constant matrix.
The action (63) is invariant under the gauge transforma-
tions

δεA
a
µ = ∂µε

a, δεϕ
A = 0, (64)

and the first-class Hamiltonian is expressed by (13), with

h̄0 =
1
2
KABΠAΠB − 1

2
KAB

(
∂jϕ

A
) (
∂jϕB

)
+ V

(
ϕA
)
,

(65)
the matrix KAB denoting the inverse of KAB , and ΠA

meaning the canonical momenta conjugated to ϕA. In this
situation we have

yα0 =
(
ϕA, ΠA

)
, (66)

with[
ϕA, ϕB

]
= 0, [ΠA, ΠB ] = 0,

[
ϕA, ΠB

]
= δA

B . (67)

By performing the identifications

yα1 ←→ ϕA, zα1 ←→ ΠA, σα1
β1
←→ δA

B , (68)

from (42) we obtain that the conserved charge ba is pre-
cisely given by

ba = ΠAT
A
a Bϕ

B . (69)

With ba at hand, we then deduce the form of the currents
ji
a by employing the formula (53). Due to (65), we get

[
ba, H̄0

]
= TA

a BK
BCΠAΠC − ∂V

∂ϕA
TA

a Bϕ
B

−KACT
A
a B

(
∂i∂

iϕC
)
ϕB . (70)

In order to reveal some conserved Hamiltonian currents in
the matter sector, it is necessary that

∂V

∂ϕA
TA

a Bϕ
B = 0, (71)

T̃aBC = −T̃aCB , T̄AC
a = −T̄CA

a , (72)

where T̃aBC ≡ KABT
A
a C , T̄

AC
a ≡ KBCTA

a B . Inserting
(71) and (72) in (70), we arrive at[

ba, H̄0
]
+ ∂i

(
KACT

A
a B

(
∂iϕC

)
ϕB
)
= 0, (73)

and hence the conserved currents are

ji
a = KACT

A
a B

(
∂iϕC

)
ϕB . (74)

Once we determined ba and ji
a, the deformed BRST charge

and the first-order deformation of the BRST-invariant
Hamiltonian are completely constructed. Regarding the
second-order deformation of the Hamiltonian, by direct
computation we deduce∫

d3x
[
ji
b, ba

]
Ab

iη
a
2 = −

∫
d3x fc

abj
i
cA

b
iη

a
2

+s
(∫

d3x
1
2
KACT

A
b BT

C
a Eϕ

BϕEAaiAb
i

)
, (75)

so the conditions of case (b) (see (60)) are met. Then, we
infer that

H2 = −
∫

d3x

(
1
4
fa

bcf
c
deA

ibAj
aA

d
iA

e
j

+
1
2
KACT

A
b BT

C
a Eϕ

BϕEAaiAb
i

)
. (76)

As [H2, Ω1] = 0, it follows that the third-order deforma-
tion equation is verified for H3 = 0, and similarly we can
take H4 = H5 = · · · = 0.

Gathering the results derived so far, it follows that
both the deformed BRST charge and BRST-invariant
Hamiltonian can respectively be written in the form

Ω =
∫

d3x
(
π0

aη
a
1 −

(
(Di)

b
a πi

b − gΠAT
A
a Bϕ

B
)
ηa
2

+
1
2
gfc

abP2cη
a
2η

b
2

)
, (77)

HB =
∫

d3x

(
1
2
πiaπ

a
i +

1
4
F̃ a

ijF̃
ij
a

−Aa
0

(
(Di)

b
a πi

b − gΠAT
A
a Bϕ

B
)

+
1
2
KABΠAΠB − 1

2
KAB

(
DA

j Cϕ
C
) (

DjB
Dϕ

D
)

+ V
(
ϕA
)
+
(
ηa
1 − gfa

bcη
b
2A

c
0
)P2a

)
, (78)

where
DA

j C = δA
C∂j + gTA

a CA
a
j . (79)

Now, we have enough information to identify the result-
ing interacting theory. Only the secondary constraints are
deformed

γ2a ≡ −
(
(Di)

b
a πi

b − gΠAT
A
a Bϕ

B
)
≈ 0, (80)

and they form a Lie algebra in the Poisson bracket, like
in (46). The antighost number zero piece in (78)

H̃0 =
∫

d3x

(
1
2
πiaπ

a
i +

1
4
F̃ a

ijF̃
ij
a

−Aa
0

(
(Di)

b
a πi

b − gΠAT
A
a Bϕ

B
)
+

1
2
KABΠAΠB

− 1
2
KAB

(
DA

j Cϕ
C
) (

DjB
Dϕ

D
)
+ V

(
ϕA
))

, (81)

represents the first-class Hamiltonian of the coupled the-
ory. The component from (78) linear in the antighosts un-
derlines that the Poisson brackets between the constraints
and the first-class Hamiltonian are modified like
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[
H̃0, G1a

]
= γ2a,

[
H̃0, γ2a

]
= −gfc

abA
b
0γ2c. (82)

In this way, we observe that we have obtained nothing but
the Hamiltonian version of the theory that describes the
interaction between Yang–Mills fields and a set of scalar
fields.

The Lagrangian version of the interacting model can
be derived in the usual manner, thus yielding the action

SL [Aa
µ, ϕ

A
]
=
∫

d4x

(
− 1

4
F̃ a

µνF̃
µν
a +

1
2
KAB

(
DA

µ Cϕ
C
)

×
(
DµB

Dϕ
D
)
− V

(
ϕA
))

, (83)

invariant under the deformed gauge transformations

δ̄εA
a
µ = (Dµ)

a
b ε

b, δ̄εϕ
A = gTA

a Bϕ
Bεa. (84)

The modification of the gauge transformations, as well as
the appearance of new such transformations in connection
with the matter fields, is essentially due to the deformation
of the secondary first-class constraints like in (80). If in
(83) and (84) we make the transformation TA

a B → iTA
a B ,

we derive the non-abelian analogue of scalar electrody-
namics.

6.2 Vector fields coupled to Dirac fields

Finally, we examine the consistent couplings between a set
of vector fields and a collection of massive Dirac fields. In
view of this, we start from the Lagrangian action

S̃L
0
[
Aa

µ, ψ
α
A, ψ̄

A
α

]
=
∫

d4x

(
− 1

4
F a

µνF
µν
a + ψ̄ A

α

×
(
i (γµ)αβ ∂µ −mδα

β

)
ψβ

A

)
, (85)

where ψα
A and ψ̄ A

α denote the fermionic spinor compo-
nents of the Dirac fields ψ A and ψ̄ A. The action (85) is
invariant under the gauge transformations

δεA
a
µ = ∂µε

a, δεψ
α
A = 0, δεψ̄

A
α = 0. (86)

The purely matter theory is subject to the second-class
constraints

χ̄α
A ≡ Π̄α

A +
i
2
(
γ0)α

β
ψβ

A ≈ 0,

χ A
α ≡ Π A

α +
i
2
(
γ0)β

α
ψ̄ A

β ≈ 0, (87)

where Π A
α and Π̄α

A represent the canonical momenta re-
spectively conjugated to ψα

A and ψ̄ A
α . By eliminating the

constraints (87) with the help of the Dirac bracket, we
find for the model under consideration that

yα0 =
(
ψα

A, ψ̄
A

α

)
, (88)

where the fundamental Dirac brackets are expressed by[
ψα

A, ψ
β
B

]
= 0,

[
ψ̄ A

α , ψ̄ B
β

]
= 0,[

ψα
A, ψ̄

B
β

]
= −i (γ0)α

β
δ B
A . (89)

The first-class Hamiltonian is of the type (13), with

h̄0 = −ψ̄ A
α

(
i
(
γi
)α

β
∂i −mδα

β

)
ψβ

A. (90)

If we make the identifications

yα1 ←→ ψα
A, zα1 ←→ ψ̄ A

α , σα1
β1
←→ −i (γ0)α

β
δ B
A ,

(91)
from (42) we deduce that the conserved charge ba reads

ba = iψ̄ B
α

(
γ0)α

β
TA

a Bψ
β
A. (92)

On account of (90) we derive that

[
ba, H̄0

]
= −∂i

(
iψ̄ B

α

(
γi
)α

β
TA

a Bψ
β
A

)
, (93)

hence the conserved currents will be

ji
a = iψ̄ B

α

(
γi
)α

β
TA

a Bψ
β
A. (94)

In order to fully determine the interacting theory, it re-
mains to analyse the higher-order deformations of the
BRST-invariant Hamiltonian. Direct computation yields[

ji
b, ba

]
= −fc

abj
i
c, (95)

such that we are in case (a) (see (57)). Consequently, we
find that H2 is like in (58), and also H3 = H4 = · · · = 0.

Putting together the results obtained until now, it re-
sults that the deformed BRST charge and new BRST-
invariant Hamiltonian can be written

Ω=
∫
d3x

(
π0

aη
a
1 −

(
(Di)

b
a πi

b − igψ̄ B
α

(
γ0)α

β
TA

a Bψ
β
A

)

×ηa
2 +

1
2
gfc

abP2cη
a
2η

b
2

)
, (96)

HB =
∫

d3x

(
ψ̄ B

α

(
i
(
γi
)α

β
DA

i B −mδα
βδ

A
B

)
ψβ

A

+
1
2
πiaπ

a
i +

1
4
F̃ a

ijF̃
ij
a

−Aa
0

(
(Di)

b
a πi

b − igψ̄ B
α

(
γ0)α

β
TA

a Bψ
β
A

)

+
(
ηa
1 − gfa

bcη
b
2A

c
0
)P2a

)
. (97)

From the analysis of the above quantities, we see that the
modified constraints are the secondary ones, namely,

γ2a ≡ −
(
(Di)

b
a πi

b − igψ̄ B
α

(
γ0)α

β
TA

a Bψ
β
A

)
≈ 0, (98)



584 C. Bizdadea et al.: Nonabelian interactions from Hamiltonian BRST cohomology

and they form again a Lie algebra in terms of the Dirac
bracket, just like in (46). The antighost number zero piece
from (97)

H̃0 =
∫

d3x

(
ψ̄ B

α

(
i
(
γi
)α

β
DA

i B −mδα
βδ

A
B

)
ψβ

A

+
1
2
πiaπ

a
i +

1
4
F̃ a

ijF̃
ij
a

−Aa
0

(
(Di)

b
a πi

b − igψ̄ B
α

(
γ0)α

β
TA

a Bψ
β
A

))
, (99)

gives the deformed first-class Hamiltonian, while the term
from (97) linear in the antighosts indicates that the Dirac
brackets between the constraints and the first-class Hamil-
tonian change like in (82). In conclusion, we are led to
the Hamiltonian formulation of the model describing the
interaction between Yang–Mills fields and a collection of
spinor fields.

The Lagrangian setting of this interacting model is de-
scribed by the action

SL [Aa
µ, ϕ

A
]
=
∫

d4x

(
− 1

4
F̃ a

µνF̃
µν
a (100)

+ψ̄ B
α

(
i (γµ)αβ DA

µ B −mδα
βδ

A
B

)
ψβ

A

)
,

subject to the deformed gauge transformations

δ̄εA
a
µ = (Dµ)

a
b ε

b, δ̄εψ
α
A = gTB

a Aψ
α
Bε

a,

δ̄εψ̄
A

α = −gTA
a Bψ̄

B
α εa, (101)

which are again a consequence of the new constraints (98).
Like in the scalar case, if in (100) and (101) we perform
the replacement TA

a B → iTA
a B and consider an SU(3)

gauge algebra, we arrive at quantum chromodynamics.

7 Conclusion

In conclusion, in this paper we have investigated the con-
sistent Hamiltonian interactions that can be introduced
between a set of vector fields and a system of matter
fields by using some cohomological techniques. This prob-
lem involves two steps. Initially, we deform the “free”
BRST charge, and we subsequently approach the defor-
mation of the BRST-invariant Hamiltonian. Related to
the BRST charge, we notice that only the first-order de-
formation is non-trivial, while its consistency requires the
deformed first-class constraints form a Lie algebra. Re-
garding the BRST-invariant Hamiltonian, we have shown
that the first-order interaction contains two terms. The
first one describes an interaction among the vector fields.
The second term appears only if the matter theory pos-
sesses some conserved Hamiltonian currents and is of the
form jµ

aA
a
µ, where j

µ
a are the currents. The second-order

deformation of the BRST-invariant Hamiltonian contains
the spatial part of the quartic vertex of pure Yang–Mills

theory. If the currents ji
a transform under the deformed

gauge transformations according to the adjoint represen-
tation of the Lie gauge algebra, then all the other deforma-
tions involving the matter fields, of order two and higher,
vanish. In the opposite case, at least the second-order de-
formation implying matter fields is non-vanishing, but in
principle there might be other non-trivial terms. The gen-
eral procedure has been applied to the study of the inter-
actions between a set of vector fields and a collection of
real scalar fields, respectively, a set of Dirac fields.
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